WORKING WITH EXTERNAL DATA IS COMPLEX

THE DRAWBACKS OF ISOLATED USES OF EXTERNAL DATA

  • These ad-hoc solutions are not always shared with other analysts who may be interested in the same external data source. This results in countless isolated solutions within an organization. In other words, analysts are inventing the wheel over and over again. This is time-consuming and decreases overall productivity.
  • Due to the isolated uses, some analysts may use and/or interpret the external data incorrectly. This can lead to incorrect conclusions.
  • Owners of the external data may change the way the data is delivered, how it is structured, and even its meaning. With this ad-hoc approach, each analyst must correctly deal with these changes which, in turn, is bad for performance and correct processing.
  • This complex, time-consuming process of working with external data may also deter analysts from working with it, which can result in missed business opportunities.

STREAMLINING EXTERNAL DATA ACCESS WITH DATA VIRTUALIZATION

  • The technical aspects of extracting external data from a source can be defined within a data virtualization server only once by a data engineer and then reused by many analysts. This is true even when analysts want to use different technical interfaces to access the data and when the data must be delivered in different forms or formats.
  • Within a data virtualization server, descriptive metadata can be added to the external data to describe what the data means and how it must be interpreted. This increases the chance that the external data will be interpreted correctly.
  • When the owner of an external data source changes an aspect of how the data needs to be extracted, the format in which the data is delivered, or the meaning of data, again, this change only needs to be implemented once within the data virtualization server, rather than by all the analysts in their isolated solutions. All the changes made in the data virtualization server are hidden to the analysts unless the meaning of the data is changed, at which point the analysts can be easily informed.
  • With data virtualization, new data sources can be quickly made available to analysts. In fact, a full catalog of external data sources can be created, with structured tags that describe the characteristics of these sources. For example, for each source, it may indicate the trustworthiness, the timeliness, the owner, or the data quality. This type of information would help analysts to determine whether the source can be used for their analysis and provide guidance on how to do so.

AN EXAMPLE OF EXTERNAL DATA ACCESS WITH DATA VIRTUALIZATION

EASY DOES IT

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
denodo

denodo

We do #DataVirtualization We care about #AgileBI, #BigData #Analytics, #Dataservices, #DataManagement, Logical #DataWarehouse Web, #SaaS and #Cloud integration.